Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-828967.v1

ABSTRACT

Background: The coronavirus disease-19 (COVID-19) and its variants have increased rapidly worldwide since December 2019, with respiratory disease being a prominent complication. As such, optimizing evaluation methods and identifying factors predictive of disease progress remain critical. The purpose of the study was to assess late phase (≥3 weeks) pulmonary changes using intensity-based computed tomography (CT) scoring in COVID-19 patients and determine the clinical characteristics predicting lung abnormalities and recovery. Methods: : We conducted a retrospective study on 42 patients (14 males, 28 females; age 65±10 years) with COVID-19. Only patients with at least 3 CT scans taken at least 3 weeks after initial symptom onset were included in the study. Two scoring methods were assessed: (1) area-based scoring (ABS) and (2) intensity-weighted scoring (IWS). Temporal changes in the average lung lesion were evaluated by the calculating the averaged area under the curve (AUC) of the CT score-time curve. Correlations between averaged AUCs and clinical characteristics were determined. Results: Using the ABS system, temporal changes in lung abnormalities during recovery were highly variable (P=0.934). By contrast, the IWS system detected more subtle changes in lung abnormalities during in COVID-19 patients, with consistent week-to-week relative reductions in IWS (P=0.025). Strong relationships were observed with D-dimer and C-reactive protein (CRP) levels on admission, with hazard ratios (HR)(95%CI) of 5.32 (1.25-22.6)(P=0.026) and 1.05 (1.10-1.09)(P=0.017), respectively. Conclusion: Our results suggest COVID-19-mediated pulmonary abnormalities persist well-beyond 3-weeks of symptom onset, with intensity-weighted rather than area-based scoring being more sensitive. Moreover, D-dimer and CRP levels were predictive of the recovery from the disease.


Subject(s)
COVID-19 , Respiratory Tract Infections , Lung Diseases
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-153806.v1

ABSTRACT

Objectives: To assess the late phase CT changes of COVID-19 patients, and figure out factors predicting lung abnormality in late phase.Methods: We conducted a retrospective study on 42 patients (14 males, 28 females; age 65±10 years) with COVID-19 admitted between February 7, 2020 and March 27, 2020. Only patients with at least 3 CT scans taken at least 3 weeks after initial symptom onset were included in the study. CT images were analyzed by 2 independent radiologists using different scoring: (1) area-based scoring (ABS); and (2) intensity-weighted scoring (IWS). Temporal changes in the average lung lesion were evaluated by averaged area under the curve (AUC) of the CT score-time curve. Correlations between averaged AUCs and clinical characteristics were determined. Results: Temporal changes in lung abnormalities during recovery (weeks 3 through 8) of CT findings using the ABS system were variable (P=0.934). By contrast, the IWS system detected more subtle changes in lung abnormalities during the late phase of recovery in COVID-19 patients, with consistent week-to-week relative reductions in IWS (P=0.025). In assessing the correlation between averaged AUCs and clinical characteristics, strong relationships were observed with D-dimer and C-reactive protein (CRP) levels on admission, with hazard ratios (HR)(95%CI) of 5.32 (1.25-22.6)(P=0.026) and 1.05 (1.10-1.09)(P=0.017), respectively. Conclusion: Our results suggest an intensity-weighted rather than area-based scoring system is more sensitive to detect subtle temporal CT changes in COVID-19, with D-dimer and CRP levels on admission being predictive of the time course of late phase recovery from the disease.


Subject(s)
COVID-19 , Lung Diseases , Skull Base Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL